文章摘要
胡泽文,李玉平,张静,吴先华.大数据研究前沿、热点与合著模式的图谱分析[J].情报工程,2018,4(4):034-049
大数据研究前沿、热点与合著模式的图谱分析
Knowledge Mapping Analysis on Frontier, Hotspots and Co-authorship Patterns of Research from Big Data Domain
  
DOI:10.3772/j.issn.2095-915X.2018.04.005
中文关键词: 大数据;科学知识图谱;可视化;CiteSpace;知识基础;研究前沿与热点
英文关键词: Big data; scientific knowledge map; visualization; CiteSpace; knowledge basis; frontier and hotspots
基金项目:国家社科基金重大项目“基于大数据融合的气象灾害应急管理研究(16ZDA047)”;国家自然科学基金重大研究计划培 育项目(91546117);国家自然科学基金资助(71603128);江苏省自然科学基金资助课题(BK20160974);江苏高校品牌专业 建设工程资助项目。
作者单位
胡泽文 南京信息工程大学 管理工程学院 
李玉平 南京苏高专利商标事务所 
张静 南京信息工程大学 管理工程学院 
吴先华 南京信息工程大学 管理工程学院 
摘要点击次数: 2791
全文下载次数: 1430
中文摘要:
      以可视化图谱的方式全面直观展示当前新兴的热点主题——大数据的国内外研究全貌,为领域研究者和从业者提供一定的指引。因此,本文融合Web of Science 和中国知网中“大数据”研究文献数据,借助CiteSpaceII 可视化分析软件绘制出国内外大数据领域的科学知识图谱——作者、国家和机构的科研合作网络, 关键词共现聚类网络,文献共被引聚类网络,揭示出国内外大数据研究概貌。研究发现,国内大数据方面科研社区较多,但规模较小,而国际大数据科研社区较少,但规模较大,规模最大研究社区,达到30 多人。国家和机构之间的科研合作极少,国际TOP30 科研机构中,大部分为美国高校,中国机构较少。国内外大数据研究都涉及的热点有:基于大数据的云计算;基于MapReduce 和Hadoop 的海量数据分布式处理研究;大数据在数据挖掘、社会网络、互联网金融、识别与预测等领域的应用研究。而国内涉及较少的研究热点有:大数据模型和算法研究、大数据分类研究和大数据相关系统研究。
英文摘要:
      The purpose of this paper is to provide help for researchers and workers of “big data” field through presenting the whole research landscape comprehensively and intuitively by using a series of knowledge mappings. This paper utilized CiteSpace II to make a series of knowledge mappings, visa coauthorship network, cooperative network of countries and institutions, co-occurrence mapping of keywords and co-cited cluster network of literature, which revealed the whole research landscape in big data field based on literature data related to “big data” from Web of Science and CNKI. Then, the results indicated that there are more but smaller research communities in China comparing to fewer but larger international research communities, with more than 30 members in largest international research communities. Fewer research cooperation happened among countries and institutions, most of the top 30 international research institutions are universities in America, while fewer domestic institutions were detected. Furthermore,both of domestic and international studies of big data gave more attention on the following topics, e.g.,cloud computing based on big data, distributed processing of big data using MapReduce and Hadoop,application of big data in data mining, social network, online finance, identification and prediction. However,some international research hotspots including big data model and algorithm, classification of big data,processing system of big data have not attracted more attention from domestic scholars yet.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮