文章摘要
周波,杨朝峰.基于二分网络模型的专利权人推荐研究 ——以新能源汽车领域为例[J].情报工程,2016,2(4):056-068
基于二分网络模型的专利权人推荐研究 ——以新能源汽车领域为例
The Recommendation of Patentee Based on Bipartite Network ——A Case Study of New Energy Vehicles
  
DOI:10.3772/j.issn.2095-915X.2016.04.008
中文关键词: 二分网络 ,二阶资源扩散 ,合作者推荐
英文关键词: Bipartite network, second order resource diffusion, collaborator recommendation
基金项目:
作者单位
周波 中国科学技术信息研究所 
杨朝峰 中国科学技术信息研究所 
摘要点击次数: 2836
全文下载次数: 1846
中文摘要:
      通过推荐技术为企业推荐合作者,在提高技术研发效率方面有着重要的意义。在 5 种 ( 物质扩 散算法、热传导算法、偏热传导算法、混合算法、接受者能力算法 ) 基于二分网络推荐算法的基础上, 本文提出二阶同向资源扩散算法;同时使用 β 来判断对合作者合作倾向。以新能源汽车领域专利权 人推荐为例进行实验,实验结果证明使用二阶资源扩散算法比一阶资源扩散算法推荐效果要好,准确 率最高可达 27.59%,召回率最高可达 30.05%,提升幅度最大可以达到 15.17%,最优 β 表明优先选择 其曾经有过合作关系的专利权人进行合作
英文摘要:
      To recommend suitable collaborators through recommendation has important significance of improving the efficiency and the quality of technology research and development. Based on five different bipartite network recommendation algorithms(diffusion algorithm, heat conduction algorithm, partial heat conduction algorithm, hybrid algorithm, the receiver ability algorithm), this paper proposed a new algorithm hereafter, we call it “the second order resource diffusion algorithm of the same direction” , and this study employed a parameter β to evaluate the tendency of cooperation. We applied this new algorithm in the field of new energy vehicles as an example. The experiment results showed that the performances of this new algorithm are better than the first order resource diffusion algorithm, the precision rate is 27.59%, the recall rate is 30.05%, the highest improvement is 15.17% compared with other algorithms. In addition, the results of optimal β indicated that the patentee are preference of former collaborators.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮